Fiche technique
Format : Relié
Nb de pages : 273 pages
Poids : 502 g
Dimensions : 16cm X 24cm
EAN : 9782842250140
Théorie des ensembles
Quatrième de couverture
Née il y a un siècle de l'esprit de Cantor, la théorie des ensembles fascine toujours les mathématiciens. A une époque où les controverses sur les fondements étaient incessantes, elle est venue proposer un cadre axiomatique aux mathématiques, ainsi qu'un témoignage de leur unité profonde.
Ce livre expose les bases d'une théorie qui est devenue un vaste domaine de recherches aux applications variées.
Dans la première partie sont d'abord exposés les axiomes usuels de la théorie des ensembles de Zermelo-Fraenkel (ZF), les notions fondamentales d'ordinal et de cardinal, l'axiome du choix et ses équivalents classiques. Cette présentation amène naturellement à la question essentielle : quels axiomes peut-on ajouter à la théorie ZF sans la rendre contradictoire ? C'est le problème de la consistance relative. On le résoud notamment pour l'axiome du choix et l'hypothèse du continu, suivant la méthode des modèles intérieurs. Cette partie s'achève sur une démonstration inédite, particulièrement élégante, du théorème d'incomplétude de Gödel.
La seconde partie est consacrée à la méthode du forcing et à ses applications ; entre autres le célèbre résultat de Cohen sur l'indépendance de l'hypothèse du continu, et le théorème de Solovay sur la non-contradiction de l'axiome : <
Complété par une importante série d'exercices avec des indications détaillées, cet ouvrage s'adresse aussi bien aux étudiants de deuxième et troisième cycle qu'aux enseignants et chercheurs en mathématiques et à tous ceux qu'intéresse la philosophie des mathématiques.